(8x^3-50x)/(4x^2-6x-10)

Simple and best practice solution for (8x^3-50x)/(4x^2-6x-10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8x^3-50x)/(4x^2-6x-10) equation:


D( x )

4*x^2-(6*x)-10 = 0

4*x^2-(6*x)-10 = 0

4*x^2-(6*x)-10 = 0

4*x^2-6*x-10 = 0

4*x^2-6*x-10 = 0

DELTA = (-6)^2-(-10*4*4)

DELTA = 196

DELTA > 0

x = (196^(1/2)+6)/(2*4) or x = (6-196^(1/2))/(2*4)

x = 5/2 or x = -1

x in (-oo:-1) U (-1:5/2) U (5/2:+oo)

(8*x^3-(50*x))/(4*x^2-(6*x)-10) = 0

(8*x^3-50*x)/(4*x^2-6*x-10) = 0

8*x^3-50*x = 0

2*x*(4*x^2-25) = 0

4*x^2 = 25 // : 4

x^2 = 25/4

x^2 = 25/4 // ^ 1/2

abs(x) = 5/2

x = 5/2 or x = -5/2

2*x*(x-5/2)*(x+5/2) = 0

4*x^2-6*x-10 = 0

2*(2*x^2-3*x-5) = 0

2*x^2-3*x-5 = 0

DELTA = (-3)^2-(-5*2*4)

DELTA = 49

DELTA > 0

x = (49^(1/2)+3)/(2*2) or x = (3-49^(1/2))/(2*2)

x = 5/2 or x = -1

2*(x+1)*(x-5/2) = 0

(2*x*(x-5/2)*(x+5/2))/(2*(x+1)*(x-5/2)) = 0

( 2*x )

2*x = 0 // : 2

x = 0

( x+5/2 )

x+5/2 = 0 // - 5/2

x = -5/2

( x-5/2 )

x-5/2 = 0 // + 5/2

x = 5/2

x in { 5/2}

x in { 0, -5/2 }

See similar equations:

| x(2x-3)+5=0 | | 4/7+4/7 | | 238/14 | | -4-3(1+2x)=-19 | | 5n^6-15n^5-140n^4=0 | | 3(x+4)/9=2x-12 | | 5(6+5)=10 | | 11-7x=15x | | s=2g+2z | | 12x-(3-30x+5y)+40y= | | 12+x/5+4/5=-20 | | -4-3(1+2x)=19 | | 8x+6y=50 | | k/6+8=13 | | -x+5/3=4 | | 5(x-4)+2=2(x+2)-4 | | -(8-a/12)=-6 | | -12=23-5x | | 42x+35y-3= | | -3f-2-2f=23 | | 6x+7=145 | | 1/6(2x-2)=8 | | 30=2+4(a+5) | | -8-a/12=-6 | | 7(x+2)+3(2x-1)=-2 | | -25=13x-10 | | -6.8h+15.3=-39.1 | | 3/u=-9 | | -18=3(4x+2) | | 8u=64 | | u-11=6 | | 9=2s+2 |

Equations solver categories